DEPT. OF MATHEMATICS

JHARGRAM RAJ COLLEGE

B.Sc(H) Sem - IV , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2018-19
 Sub: MATHEMATICS, Course - C9

Full Marks: 10
Time: $\mathbf{3 0} \mathrm{m}$.
Answer any five questions:

1. Let $f(x, y)=\sqrt{|x y|}$. Prove that f is not differentiable at $(0,0)$.
2. Verify whether $\lim _{(x, y) \rightarrow(0,0)} \frac{|x|}{y^{2}} e^{-\frac{|x|}{y^{2}}}$ exists or not.
3. If $V=\ln \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, Prove that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right) V=\frac{3}{x+y+z}$.
4. Show that the function f is continuous at $(0,0)$ where $f(x, y)=\left\{\begin{array}{c}\frac{x^{3}-y^{3}}{x^{2}+y^{2}}, x^{2}+y^{2} \neq 0 \\ 0, x^{2}+y^{2}=0\end{array}\right.$
5. Let z be a differentiable function of $x \& y$ and let $x=r \cos \theta, y=r \sin \theta$.

Prove that $\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}=\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}$.
6. Find the work done in moving a particle once around a circle C in the $x y$ plane, if the circle has the centre at $(0,0)$ and radius 2 unit and the field is given by $\vec{F}=(2 x-y+2 z) \hat{\imath}+\left(x+y-z^{2}\right) \hat{\jmath}+(3 x-2 y-5 z) \hat{k}$.
7. Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{\imath}+\left(x^{2}\right) \hat{\jmath}+\left(3 x z^{2}\right) \hat{k}$ is a conservative force field.
8. Find the maximum value of the directional derivative of the scalar point function $\emptyset(x, y, z)=x^{2}-y^{2}+z^{2}$ at $(1,3,2)$. Find also the direction in which it occurs.

B.Sc(H) Sem - IV , INTERNAL ASSESSMENT-2 ${ }^{\text {nd }}$, 2018-19
 Sub: MATHEMATICS, Course - C9

Full Marks: 10
Time: $\mathbf{3 0} \mathbf{m}$.
Answer any five questions:

1. Compute the Surface area of the unit Sphere.
2. Assuming that the inversion of order of integration is possible, change the order of integration $\int_{\frac{1}{3}}^{\frac{2}{3}} d x \int_{x^{2}}^{\sqrt{x}} f(x, y) d y$.
3. If $u=x+y+z, u v=y+z, z=u v w$, Show that $\frac{\partial(x, y, z)}{\partial(u, v, w)}=u^{2} v$.
4. If $F(x, y, z)=0$, Prove that $\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1$.
5. Find all the stationary points of the function $f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$.
6. Prove that $a x^{2}+2 h x y+b y^{2} \& A x^{2}+2 H x y+B y^{2}$ are independent unless $\frac{a}{A}=\frac{h}{H}=\frac{b}{B}$.
7. Show that the area bounded by the simple closed curve C is given by $\frac{1}{2} \oint x d y-y d x$.
8. Show that $\iint \vec{r} \cdot \vec{n} d s=3 V$ where V is the volume of the closed Surface S .
